

International Baccalaureate Baccalauréat International Bachillerato Internacional

22107208

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SERIES AND DIFFERENTIAL EQUATIONS
Thursday 20 May 2010 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 8]

Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y^{2}=\mathrm{e}^{x}$ and $y=1$ when $x=0$, use Euler's method with a step length of 0.1 to find an approximation for the value of y when $x=0.4$. Give all intermediate values with maximum possible accuracy.
2. [Maximum mark: 11]
(a) Using integration by parts, show that $\int_{0}^{\infty} \mathrm{e}^{-x} \cos x \mathrm{~d} x=\int_{0}^{\infty} \mathrm{e}^{-x} \sin x \mathrm{~d} x$.
(b) Find the value of these two integrals.
3. [Maximum mark: 9]

Solve the differential equation

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}+x y+4 x^{2},
$$

given that $y=2$ when $x=1$. Give your answer in the form $y=f(x)$.
4. [Maximum mark: 17]
(a) Using the Maclaurin series for $(1+x)^{n}$, write down and simplify the Maclaurin series approximation for $\left(1-x^{2}\right)^{-\frac{1}{2}}$ as far as the term in x^{4}.
(b) Use your result to show that a series approximation for $\arccos x$ is

$$
\arccos x \approx \frac{\pi}{2}-x-\frac{1}{6} x^{3}-\frac{3}{40} x^{5} .
$$

(c) Evaluate $\lim _{x \rightarrow 0} \frac{\frac{\pi}{2}-\arccos \left(x^{2}\right)-x^{2}}{x^{6}}$.
(d) Use the series approximation for $\arccos x$ to find an approximate value for

$$
\int_{0}^{0.2} \arccos (\sqrt{x}) \mathrm{d} x
$$

giving your answer to 5 decimal places. Does your answer give the actual value of the integral to 5 decimal places?
5. [Maximum mark: 15]
(a) Consider the power series $\sum_{k=1}^{\infty} k\left(\frac{x}{2}\right)^{k}$.
(i) Find the radius of convergence.
(ii) Find the interval of convergence.
(b) Consider the infinite series $\sum_{k=1}^{\infty}(-1)^{k+1} \times \frac{k}{2 k^{2}+1}$.
(i) Show that the series is convergent.
(ii) Show that the sum to infinity of the series is less than 0.25 .

